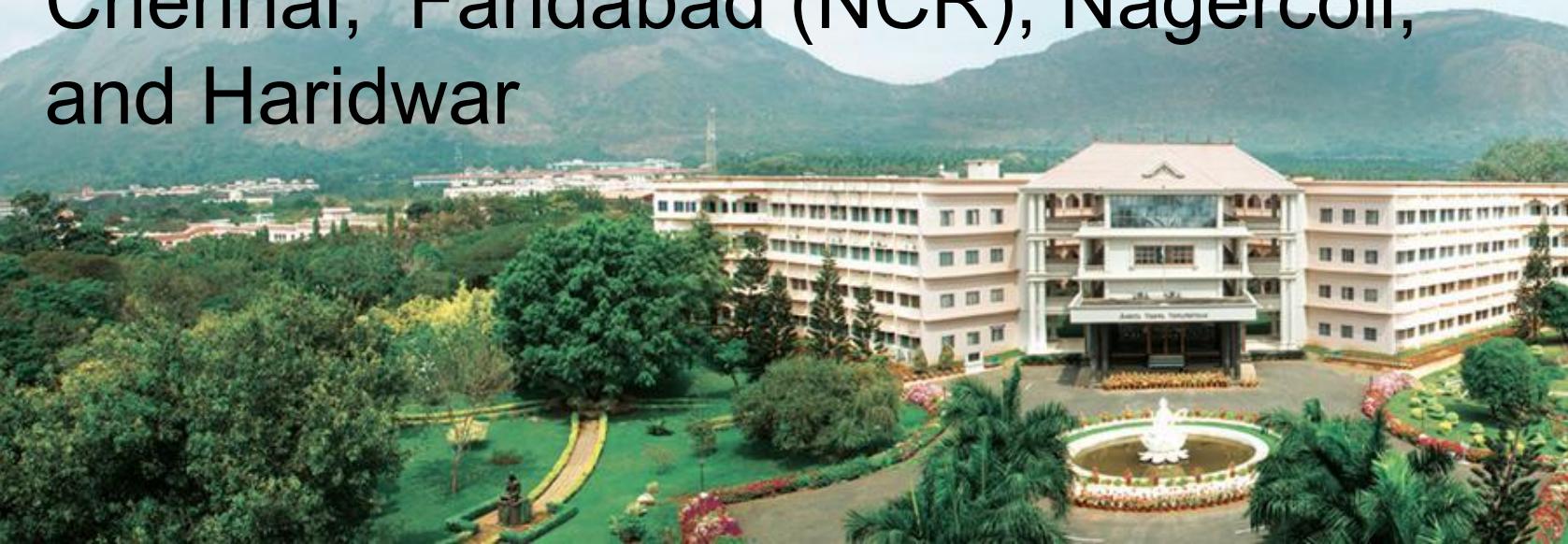
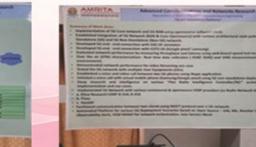


5GIF Sharing Studies Activities

5th ISMC, New Delhi
16th Dec 2025


Dr Navin Kumar
Professor,
Head of 5G-6G Innovation and Research Lab
Amrita School of Engineering, Amrita Vishwa Vidyapeetham
Bengaluru Campus



About Amrita University

10 campuses spread across India

Coimbatore, Amritapuri (Kollam),
Kochi, Bengaluru, Mysuru, Amaravati,
Chennai, Faridabad (NCR), Nagercoil,
and Haridwar

Amrita Vishwa Vidyapeetham,
5G-6G Innovation Lab, Bengaluru-560035, India

Very rich in feature – R16, R17 included

5G-6G Innovation and Research Lab

Skilling and Training

PROGRAM CATALOGUE

01 6G Essential Training & Certification

Duration: 16 Hour

Pre-requisite: None

02 5G Technology Certification

Duration: 16 Hour

Pre-requisite: None

03 5G Essential for Business Executive

Duration: 16 Hour

Pre-requisite: None

04 5G Technology Deep Dive

Duration: 40 Hour

Pre-requisite: 5G Technology Certification

05 5G Protocol Testing & Log Analysis

Duration: 40 Hour

Pre-requisite: 5G Technology Certification

06 5G Development Certification

Duration: 40 Hour

Pre-requisite: 5G Technology Certification with basic understanding of programming

07 5G Core Overview Certification

Duration: 24 Hour

Pre-requisite: None

08 5G Core Deep Dive with Protocol Analysis

Duration: 40 Hour

Pre-requisite: None

09 5G Network Optimization in Depth

Duration: 60 Hour

Pre-requisite: 5G Technology Certification

10 5G ORAN Certification

Duration: 40 Hour

Pre-requisite: 5G Technology Certification

11 5G Telco Cloud Certification

Duration: 40 Hour

Pre-requisite: 5G Technology Certification

12 4G/5G Automation with Python & AI

Duration: 40 Hour

Pre-requisite: 5G Technology Certification

Amrita School Of Engineering–Bengaluru

Amrita Vishwa Vidyapeetham

5G NETWORK IN A BOX

NOVATHINK TECH Private 5G Network-in-a-Box is an innovative solution that enables fast and easy deployment of 5G networks in various scenarios and locations. It integrates open source 5G core and 5G radio access network (RAN) into a compact, portable, and self-contained box that can be plugged into power and provide 5G connectivity. It supports multiple 5G use cases, such as industry 4.0, defense and securities, IoT, processing on the edge, video streaming, voice calls, smart campuses, and many more. It also offers high performance, low latency communication with enhanced security features.

3GPP Compliant (R15-16-17)
Supports Next-Gen Wireless Standards

Dashboard Features

- Configure: 5G Core and RAN and UEs
- Deploy: Start/Stop 5G Network
- Monitor: Packets, Logs and KPIs
- Manage: Resource Configuration & Subscribers
- Integrate: 3rd Party Apps

Contact us -
Dr Navin - navinkumar@ieee.org
Mr Bikas Kumar Singh - +91-8800669860

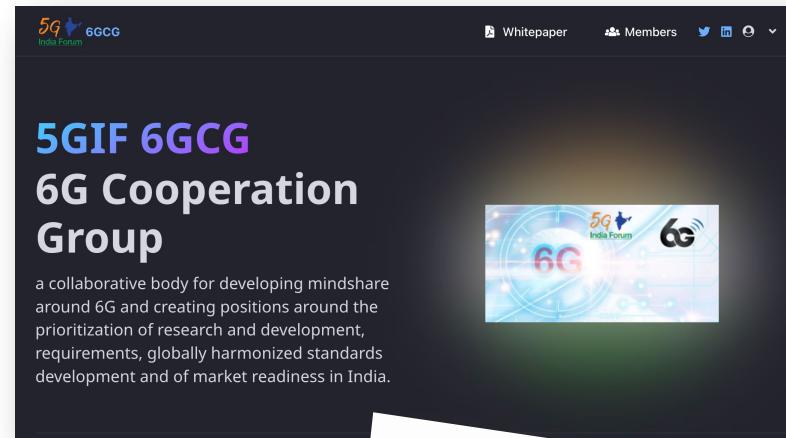
Revolutionize Research with 5G Box

5G Lab-as-a-Service for Academia & R&D

- Portable. Powerful. Plug & Play.
- Real 5G Network – Anywhere, Anytime.

Key Features:

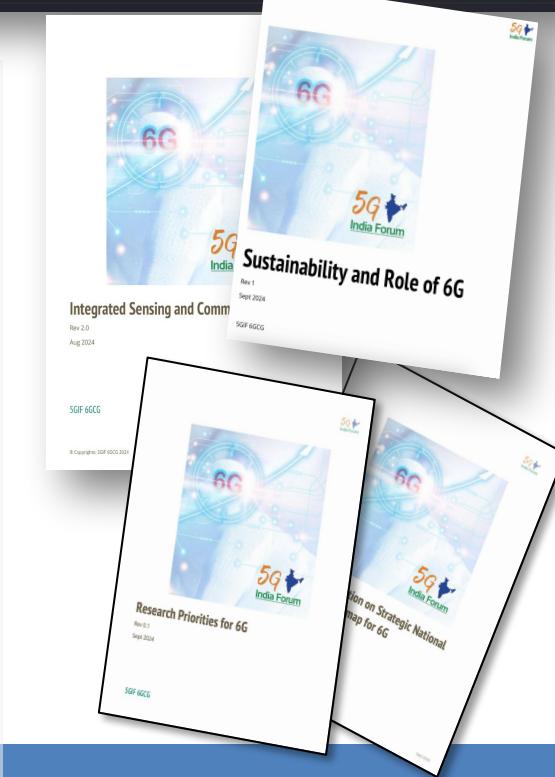
- End-to-End 5G SA/NSA Network in a Box
- Ideal for Teaching, Testing & Innovation
- Supports Real-Time Call Flow, PDU Sessions, Protocol Logging
- Compact, Rugged, Campus-Friendly Design
- Easy Integration with C, Python & Open RAN
- Remote Access & Cloud-Ready Option
- Designed for Universities, Engineering Colleges & R&D Labs



bikasksingh1@gmail.com
+91 88006 69860

5GIF Engagements

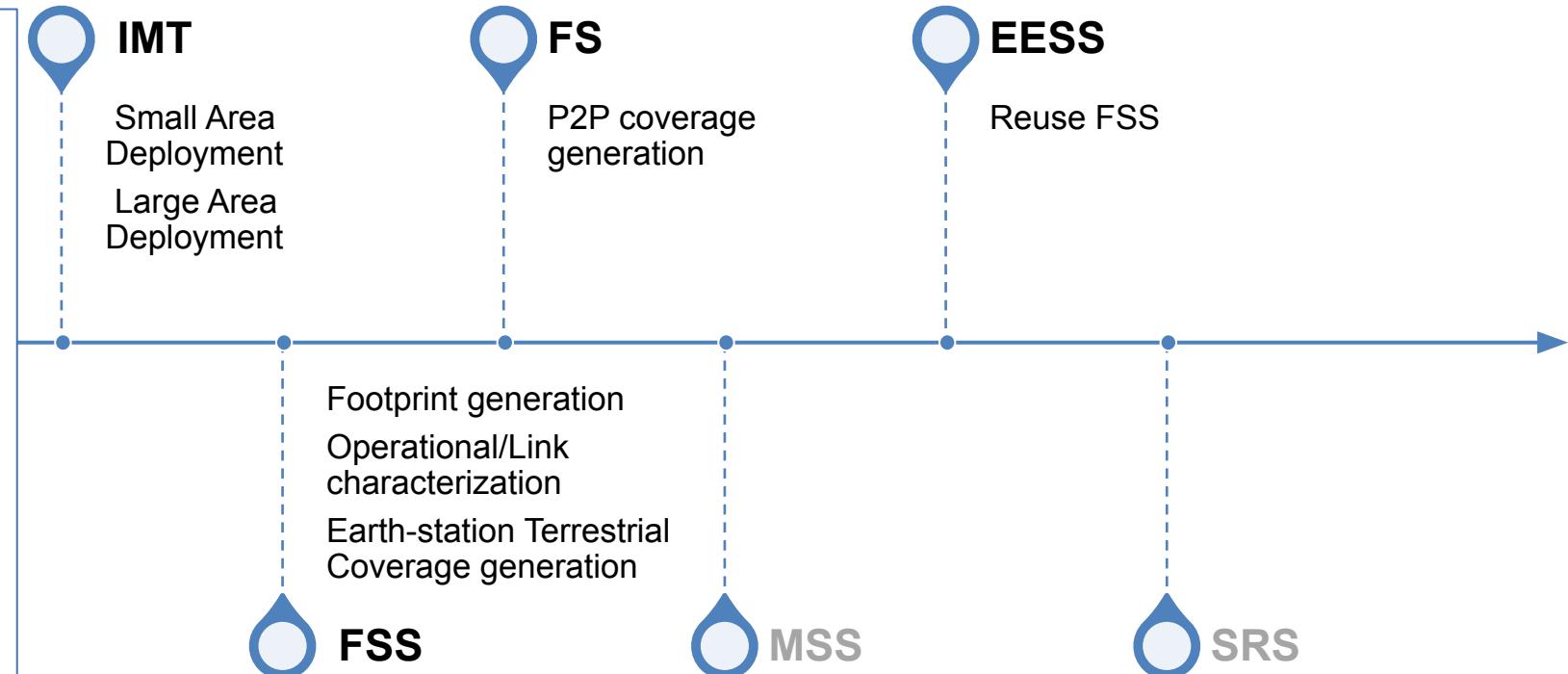
The screenshot shows the homepage of the 5GIF IEG. It features a dark header with the 5GIF logo and a sub-header '5GIF IEG'. Below this, there are links for 'Evaluation Report' and 'Experimental'. The main content area is titled 'ITU-R : Independent Evaluation Group' and includes a sub-section 'About Sat-IMT2020'. A detailed description of the IEG's purpose and role is provided, mentioning its establishment under the aegis of COAI and its role in developing 6G standards and market readiness.


The screenshot shows the homepage of the 5GIF 6GCG. It features a dark header with the 5GIF logo and a sub-header '5GIF 6GCG'. Below this, the main content area is titled '6G Cooperation Group' and includes a sub-section 'Sharing Studies Combinations'. A description of the group's purpose is provided, mentioning its role in developing mindshare around 6G and creating positions around the prioritization of research and development, requirements, and standards development.

The screenshot shows the homepage of the 5GIF Spectrum Studies portal. It features a dark header with the 5GIF logo and a sub-header '5GIF - Spectrum Studies'. Below this, the main content area is titled '5GIF Spectrum Studies' and includes a sub-section 'Sharing Studies Combinations'. A description of the portal's purpose is provided, mentioning its role in supporting the development of tools and providing a portal for online analysis and model access.

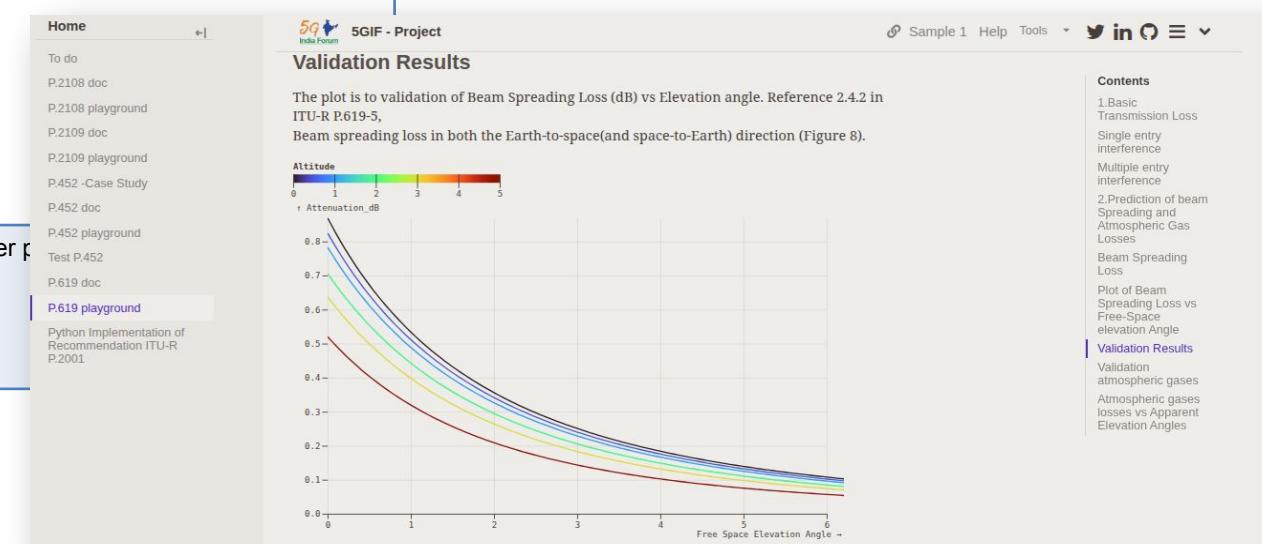
Completed Activities

- Satellite IMT-2020 Evaluation (WP4B)
- Report and results available online (<https://satimt2020.5gindiaforum.in/>)
- ITU-R – IMT-2020 Evaluation Group
- NuFront Evaluation for WP5D



Sharing Studies

- Support development of tools
- Portal for online analysis, model access will be available


Developing Software Tools for Inputs to National Preparation

- Reuse Model implementation
- Compatibility for UI /interactivity
- Input specification
 - o ITU-R based Characteristics
 - o JSON based
- Output specifications
 - o CSV, JSON
 - o Additional, interim statistics
- Independent ITU-R Propagation models
- Independent ITU-R Antenna Model
- Documentation and example usage

ITU-R Propagation Models

Name	Title	Remarks
ITU-R P.619 (including ITU-R P.676)	Propagation data required for the evaluation of interference between stations in space and those on the surface of the Earth. Includes (Attenuation by atmospheric gases and related effects)	Implementation available <ul style="list-style-type: none"> Basic transmission loss for single-entry interference Prediction of beam Spreading and Atmospheric Gas Losses
ITU-R P.2108	Prediction of clutter loss	Implementation available <ul style="list-style-type: none"> Height gain terminal correction model Statistical clutter loss model for terrestrial paths Earth-space and Aeronautical statistical clutter loss model
ITU-R P.2109	Prediction of building entry loss	Implementation available Building Entry Loss Model
ITU-R P.452	Prediction method for the evaluation of interference between stations on the surface of the Earth at frequencies from about 0.1 GHz to 50 GHz, accounting for both clear-air and hydrometeor scattering interference mechanisms. Designed to calculate propagation losses not exceeded for time percentages over the range $0.001 < p < 50\%$.	Implementation available Prediction of interference between earth surface
ITU-R P.2001	Describes a general-purpose, wide-range terrestrial propagation model for frequencies between 30 MHz and 50 GHz, encompassing various propagation scenarios and distance	Implementation under review

ITU-R IMT Modelling

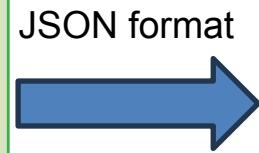
IMT Specification Related parameters

- Channel, Signal BW
- Tx, Rx Characteristics
 - o Emission Mask
 - o Output Power
 - o Power dynamic (BS,UE)
 - o Noise Figure
- Sensitivity, SINR Operating range
- SINR Range DL,UL
- Band 1 For e.g., : DL[-10.30], UL [-10.22]

*Band specific

3GPP TS 38.104 (BS)
3GPP TS 38.101 (UE)

IMT Deployment Characteristics
For typical deployment (U, SU, RU) specific to bands


- AAS in all three bands for BS
- Non-AAS for 4.5,7/8 for UE
- Params like :
 - BS Antenna height,
 - Sectorization
 - Rooftop etc.,
 - Channel BW
 - N/w loading
 - UE target power/RB, simultaneous UL NUES
 - Indoor/Outdoor Ratio
 - TDD Activity Factor
 - BS Density, dependency on Footprint underway

Antenna Characteristics IMT AAS BS
Described in ITU-RM.2101

- Introduced **sub-array geometries** with fixed down-tilt
- Parameters for Rural, MacroSubUrban, MicroUrban, SmallCell/MicroUrban, smallCell-IN/MicroUrban
- *FrontToBackRatio*, *ElementGain*, *BW3dB*, *Polarization*, *ArrayConfigurations* : (Env based)
- #Elem in rows in sub-array
- Sub-array Dtilt (3degree)
- Conducted power 28dBm/subArray
- EIRP Typical : 72.2dBm
- BS Hor-coverage +60
- BS Vert-Coverage 90-100
- Mech Tilt : 3-10

For e.g.: Some bands contiguous coverage is not expected in rural areas, and any such base stations that may exist in small numbers will be isolated and located at specific locations, and therefore, the rural deployment environment may or may not be included in the sharing and compatibility studies For e.g., 0.001-0.006 BS per km2.

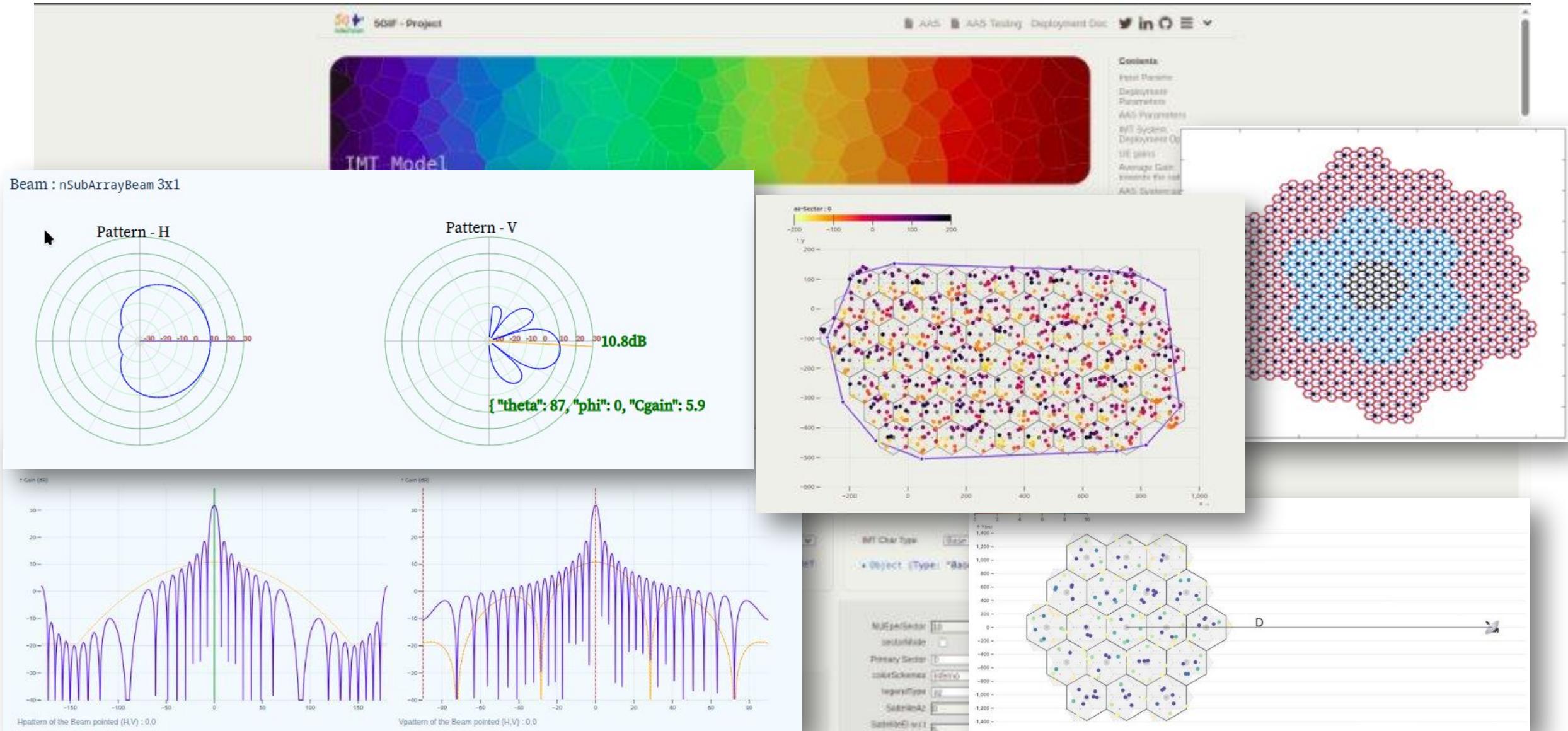
JSON format

IMT Model Library

IMTmodel.js

IMT-AAS_char.json

```


Object {
  Type: "Macro Suburban"
  AntennaPatternModel: "Table 17 (Extended AAS Model)"
  ElementGain_dB1: 6.4
  3dBBeamwidth: ▶ Object {Horizontal: 90, Vertical: 65}
  FrontToBackRatio_dB: ▶ Object {Horizontal: 30, Vertical: 30}
  AntennaPolarization: "Linear ±45° polarized sub-array"
  AntennaArrayConfiguration: ▶ Array(2) [8, 16]
  Subarrayspacing: ▶ Object {Horizontal: 0.5, Vertical: 2.1}
  ElementSpacing: ▶ Array(2) [0.5, 0.7]
  Msub: 3
  BeamTilt: 3
  ArrayOhmicLoss_dB: 2
  ConductedPowerPerSubArray_dBm: 22
  hRange: ▶ Array(2) [-60, 60]
  vRange: ▶ Array(2) [90, 100]
  mTilt: 6
  TypicalBaseStationOutputPowerPerSector_dBm: 78.3
}

Object {
  Type: "Macro Suburban"
  AntennaPatternModel: "Table 17 (Extended AAS Model)"
  ElementGain_dB1: 6.4
  3dBBeamwidth: ▶ Object {Horizontal: 90, Vertical: 65}
  FrontToBackRatio_dB: ▶ Object {Horizontal: 30, Vertical: 30}
  AntennaPolarization: "Linear ±45° polarized sub-array"
  AntennaArrayConfiguration: ▶ Array(2) [8, 16]
  Subarrayspacing: ▶ Object {Horizontal: 0.5, Vertical: 2.1}
  ElementSpacing: ▶ Array(2) [0.5, 0.7]
  Msub: 3
  BeamTilt: 3
  ArrayOhmicLoss_dB: 2
  ConductedPowerPerSubArray_dBm: 22
  hRange: ▶ Array(2) [-60, 60]
  vRange: ▶ Array(2) [90, 100]
  mTilt: 6
  TypicalBaseStationOutputPowerPerSector_dBm: 78.3
}

```

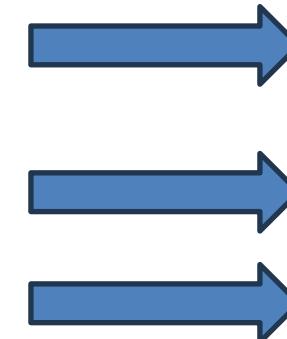
- Small Area/Large Area
- IMT BS antenna gain towards a **(theta,phi)**
 - o **theta,phi** irrespective of towards Space or Ground stations
- Modes of output
 - o **Sample Instance**
 - o **Statistical Instance**
- Ability to map IMT stations relative locations (cartesian) to lat,long (absolute locations)

AAS & Deployment Modelling

ITU-R FSS Modelling

FSS SS Configuration

```


  Object {
    Type: "Macro Suburban"
    AntennaPatternModel: "Table 17 (Extended AAS Model)"
    ElementGain_dB: 6.4
    3dBBeamwidth: ▶ Object {Horizontal: 90, Vertical: 65}
    FrontToBackRatio_dB: ▶ Object {Horizontal: 30, Vertical: 30}
    AntennaPolarization: "Linear 45° polarized sub-array"
    AntennaArrayConfiguration: ▶ Array(2) [8, 16]
    SubarraySpacing: ▶ Object {Horizontal: 0.5, Vertical: 2.1}
    ElementSpacing: ▶ Array(2) [0.5, 0.7]
    ElementTilt: 3
    BeamTilt: 3
    ArrayOhmicLoss_dB: 2
    ConductedPowerPerSubArray_dBm: 22
    hRange: ▶ Array(2) [-60, 60]
    vRange: ▶ Array(2) [90, 100]
    mTilt: 6
    TypicalBaseStationOutputPowerPerSector_dBm: 78.3
  }
}
  
```

Antenna Size,
Antenna Pattern etc.,
Rx Gain

JSON format

FSSmodel.js

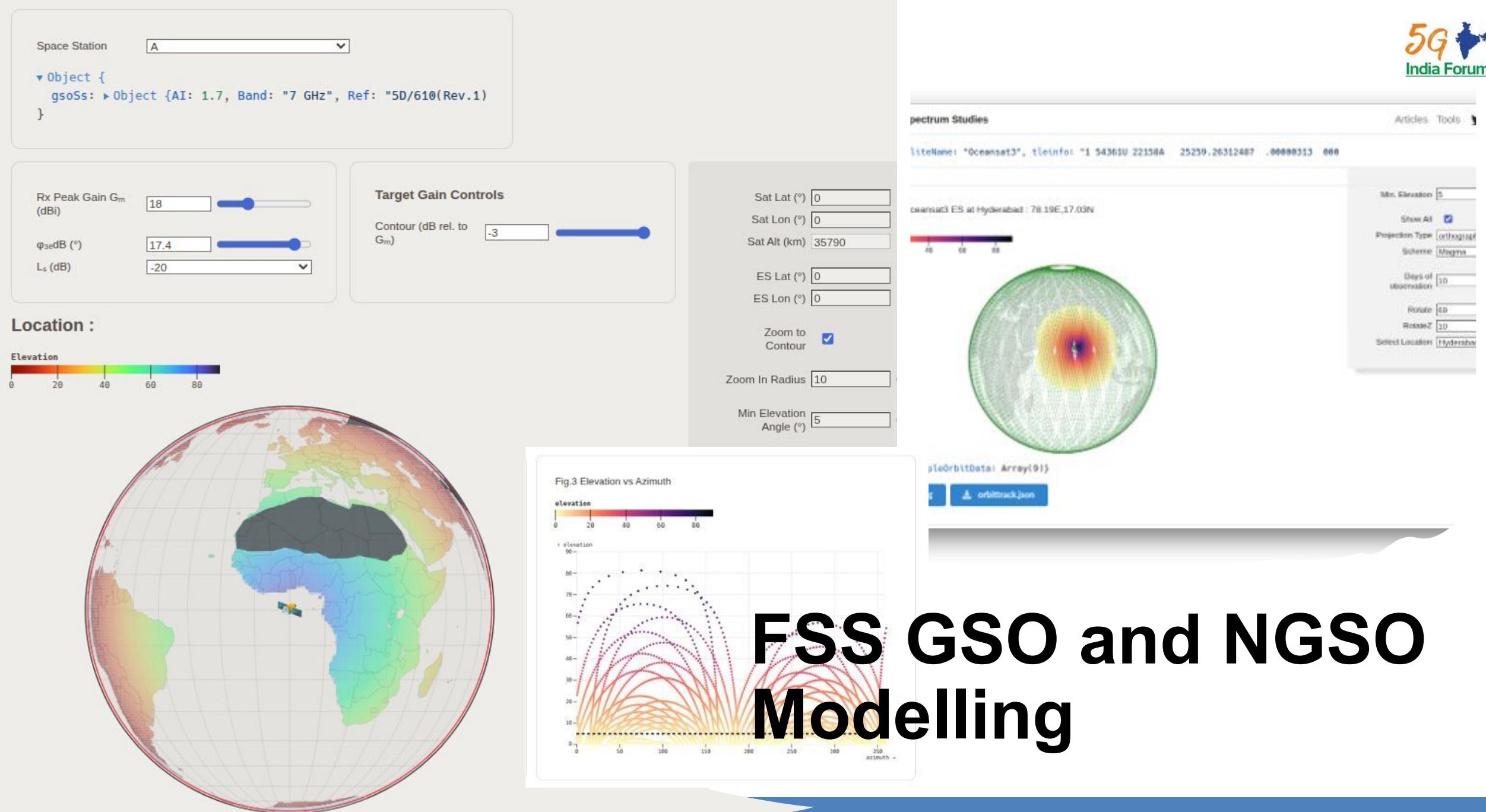
GSO Satellite

- Orbital Position (Lng)
- Height (km)
- Pointing Location, (Lat,Lng)
- Input param (3dB, xdB), footprint

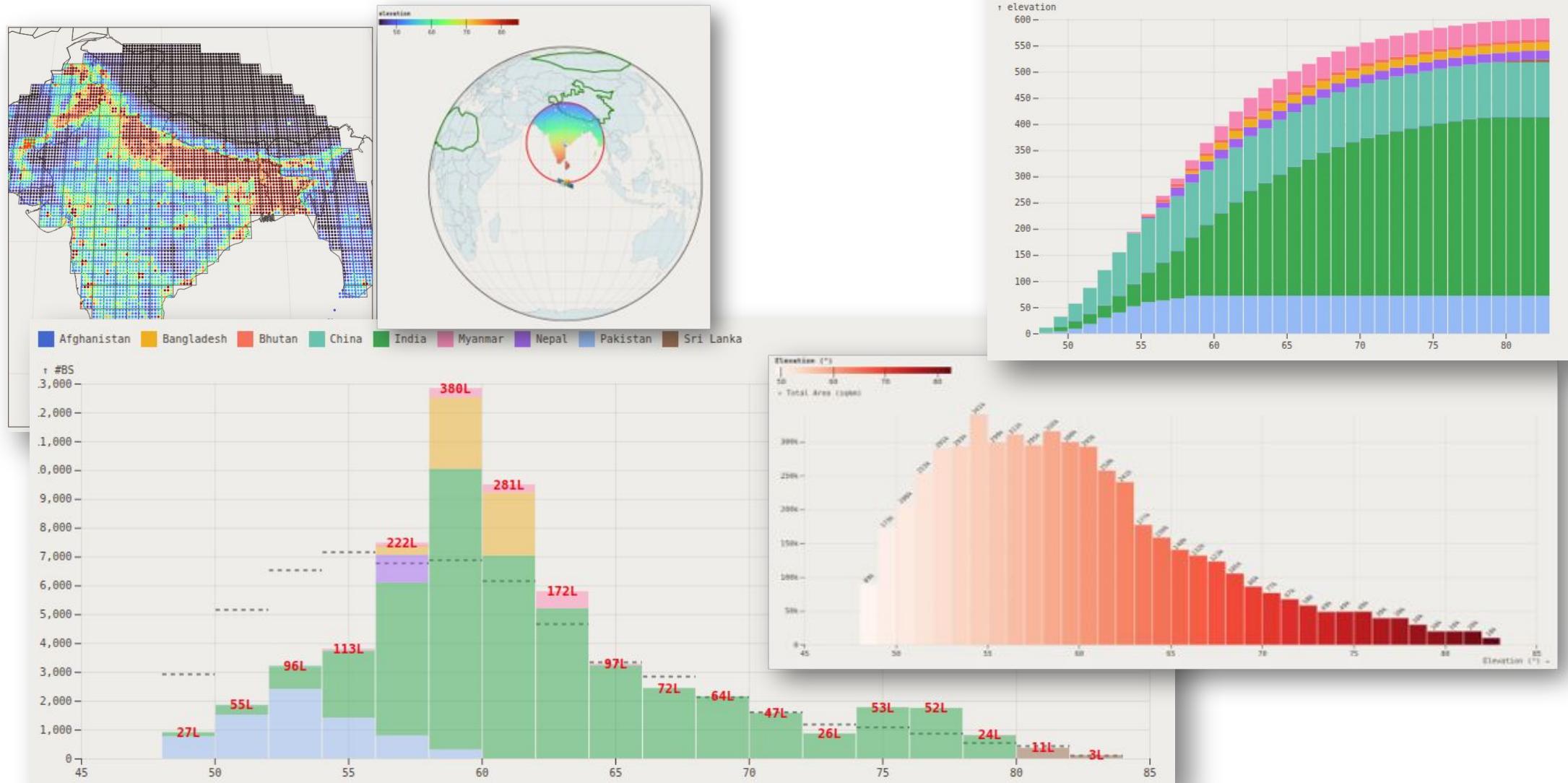
Non-GSO Satellite

- Orbital Position (Lng)
- Height (km)
- Pointing Location, (Lat,Lng)
- Input param (3dB, xdB), footprint

Ability to identify water area,
unpopulated area, deserts, etc
within the footprint.


Create exclusion zone

GSO


- Polygon of points on earth surface @ xdB of main-beam of the satellite
- Elevation angles for each grid towards the satellite
- Elevation,Azimuth angles for each grid towards the satellite

Non-GSO

- Main Beam Point Location over a period
- Moving Footprint over earth surface
- Polygon of points on earth surface @ xdB of main-beam of the satellite (**Variable ?**)
- Elevation,Azimuth angles for each grid towards the satellite

Support for SEDAC Population Redistribution

5GIF Spectrum Studies

Welcome to the dedicated portal of 5GIF's spectrum study activities

Thank You

NovaThinkTech 5G Box

NOVA TECH Private 5G Network-in-a-Box is an innovative solution that enables fast and easy deployment of 5G networks in various scenarios and locations. It integrates open source 5G core and 5G radio access network (RAN) into a compact, portable, and self-contained box that can be plugged into power and provide 5G connectivity. It supports multiple 5G use cases, such as industry 4.0, defense and securities, IoT, processing on the edge, video streaming, voice calls, smart campuses, and many more. It also offers high performance, low latency communication with enhanced security features.

Dashboard Features

- Configure: 5G Core and RAN and UEs
- Deploy: Start/Stop 5G Network
- Monitor: Packets, Logs and KPIs
- Manage: Resource Configuration & Subscribers
- Integrate: 3rd Party APIs

Contact us -
Dr Navin - navinkumar@ieee.org
Mr Biakas Singh -